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Introduction

The conservation of mass flux of particles for multiple grain size fractions, Mi, as a
function of time, t, is given by:

dMi

dt
= −wsMi

h
(1)

where ws is the settling speed of a particle in a given size class.
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Introduction

The conservation of mass flux of particles for multiple grain size fractions, Mi, as a
function of time, t, is given by:

dMi

dt
= −wsMi

h
(1)

where ws is the settling speed of a particle in a given size class.

This was developed for systems with a floor (Hazen, 1904)

Used extensively in civil engineering for design of settling ponds in wastewater
treatment

Works for volcanic plumes and umbrella clouds (Bursik et al., 1992)
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Advection-Diffusion

Hazen’s equation can be derived from the advection-diffusion equation

Assume that there is no relative diffusion

∂tCi +∇ · ~uCi = ∇2κCi + Φ (2)
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Layered Environment

Needed to test Hazen’s validity for layered systems

Set up two main types of experimental systems

In the layered environment, a light, particle-bearing fluid lies atop a denser fluid
with no particle
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Settling Phenomenology

In experiments on layered systems, we found that. . .

Particles do not always settle from the upper layer singly

There are particle-laden, descending plumes
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Theory

The development of descending plumes has been characterized by Hoyal et al.
(1999a, b):

Convective sedimentation : Gr =
gC0δ

3

ρ1ν2
, δ = wst (3)

Double diffusion : Gr =
gC0δ

2

ρ1νws
(4)

Criterion : Gr > 1000 (5)

(6)
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Shear and Re-entrainment

Shear at the boundary between layers can destroy the convection, if the turbulence
level in the upper layer is sufficiently vigorous (Gupta, 2002)

The result is. . .

Univ. Buffalo 7



Shear and Re-entrainment
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Theory

Because of inflow toward the plume caused by wind and atmospheric entrainment,
particles can be re-entrained. In general, Eqn 1 takes on a form:

dMi

dt
= −f (ws − wε)

Mi

h
(7)

where wε is a re-entrainment speed. The function, f , can be determined empirically.
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Lee Wave, Separation, Coanda Effect. . .

For plumes in a highspeed crossflow, topography can have an effect
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Lee Wave, Separation, Coanda Effect. . .

For plumes in a highspeed crossflow, topography can have an effect

But is this the case even when the plume is less dense than underlying layers?
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Over a range of Re, for the buoyant jet with ambient water density above plume
density, there is reattachment

The result is that particles that would otherwise settle through atmosphere are
deposited from a ground-hugging current
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Prognosis
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Volcanic Plume Convection
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