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OverviewOverview
Model Primer
· Advantages
· Modeling system
· Error sources

Some commonly used models
· MM5, RAMS, RUC, WRF (new)

Link to tephra models
Use of mesoscale models
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Mesoscale Model PrimerMesoscale Model Primer

Numerical Weather Prediction (NWP) model with 
sufficiently high horizontal + vertical resolution to 
forecast mesoscale (10mesoscale (10--100km, hrs100km, hrs--day)day)
phenomena

Atmosphere evolves according to physical laws of 
motion, conservation of energy and mass
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Mesoscale Model PrimerMesoscale Model Primer
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Model Primer: Grid Point vs Spectral
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Hydrostatic vs Non-hydrostaticHydrostatic vs Non-hydrostatic
Hydrostatic models assume hydrostatic equilibrium
· downward weight of atmosphere balances upward-

directed pressure gradient force

Non-hydrostatic processes/effects important when 
length of feature ≅ height (typically ≤10 km in size)

High-resolution non-hydrostatic models somewhat 
realistically forecast changes in atmospheric 
buoyancy & associated potential for convection

d (VERTICAL MOTION) = d (VERTICAL MOTION) = 
d (ADVECTION) d (ADVECTION) 

+ d (LOCAL BUOYANCY) + d (LOCAL BUOYANCY) 
+ d (NON+ d (NON--HYDROSTATIC VERTICAL PRESSURE GRADIENT)HYDROSTATIC VERTICAL PRESSURE GRADIENT)
–– PRECIPITATION DRAGPRECIPITATION DRAG
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Advantages of Mesoscale ModelAdvantages of Mesoscale Model
Provide great detail & often accurately represent 
intensity of smaller-scale weather phenomena
Mesoscale models often produce superior Mesoscale models often produce superior 
forecasts in coastal and mountainous forecasts in coastal and mountainous 
regions when compared to traditional largerregions when compared to traditional larger--
scale modelsscale models
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Error SourcesError Sources

Numerics
· grid-point/spectral, resolution, coordinate system, 

computational domain
Physics
Parameterizations
Initial Conditions
Boundary Conditions
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Horizontal Resolution
Adequately resolve only ≥ 5∆x
· Minimize aliasing with filtering at smaller scales
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Vertical Coordinates
Height
Sigma
Isentropic 

(constant potential temp)
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Vertical Resolution

more-complex applications, e.g. boundary 
layer pollutant dispersion, very sensitive to 
data resolution - large variations in vertical 
mixing and vertical wind shear
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obs

20km – mod OI

1200 UTC
9 Dec 2001
Grand Junction, CO
rawinsonde

Better near-surface fit to obs
with 50lvls, 20km horiz

40km - OI

Comparison of
obs sounding vs.
grid point soundings
for 40 vs. 50 levels
40km vs. 20km
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Boundary 
Conditions

Horizontal

Vertical
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Model Initialization
Spin-up: starting vertical motions and divergent circulations

Warm start: incorporates data over long time
Data assimilation merges obs to preserve ongoing circulation

· Will typically produce better forecasts
· Where no new obs, features left intact

Errant forecast -> into next model analysis
· Computationally, warm starts not always feasible

Cold start: analyses from other source
Require model to build up circulations. 
· Not incorporating forecast into analysis, no spurious predictions to 

correct

Noticeable differences may persist 6 hrs into forecast period, but 
generally, negligible after 12 hrs
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Parameterized ProcessesParameterized Processes
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ParameterizationParameterization
NWP models cannot resolve features and/or 

processes that occur within single grid box

Computers not yet powerful enough to directly treat 
them because phenomena too small or too 
complex to be resolved numerically

Processes often not understood well enough to be 
represented by equation or data not available

Effects profoundly impact model fields and crucial 
to creating realistic forecasts
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Commonly Used ModelsCommonly Used Models
Primarily Research – multi-platform, parallel 

computing, multiple physics options, nesting
MM5 (Penn State/National Center for Atmospheric Research –NCAR)

RAMS (Colorado State)

WRF (NCAR, NCEP, AFWA, etc…)

Operational
ETA (NCEP)
RUC (NCEP)
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MM5 Modeling SystemMM5 Modeling System

http://www.mmm.ucar.edu
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Real-time forecasting with MM5

Sites using MM5 for real-time forecasting
· Universities
· Government
· Military
· Commercial
· Foreign

(Dudhia, NCAR/MMM)
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Air Force Weather Agency –
Operational Domains of MM5

(Dudhia, NCAR/MMM)
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Rapid Update Cycle (RUC)Rapid Update Cycle (RUC)
http://www.fsl.noaa.gov

Provide high-frequency mesoscale analyses and short-
range numerical forecasts for users including:
· aviation
· severe weather forecasting
· general public forecasting

(Benjamin, NOAA, FSL)
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1-h Version of Rapid Update Cycle at NCEP

NCEP model hierarchy NCEP model hierarchy –– RUCRUC (1h frequency) (1h frequency) →→ EtaEta (6h) (6h) →→ GlobalGlobal (6h)(6h)

(Benjamin, NOAA, FSL)
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Weather Research Forecast ModelWeather Research Forecast Model

• Priority: 1-10 km grid

• Portable and efficient on 
parallel computers

• Advanced data  
assimilation, model 
physics

• Well suited for broad 
range of applications

• Community model with 
direct path to operations

http://www.wrf-model.org
(Klemp, NCAR/MMM)
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WRF - 36 h Fcst Valid 12Z 12 May 02, 24 h Precip

12 km ETA 24 h RFC Analysis

10 km WRF 

(Klemp, NCAR/MMM)

22 km WRF 
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Model Physics in High Resolution NWP

              

PBL Parameterization

Physics
“No Man’s Land”

1                                              10 100        km

Cumulus ParameterizationResolved  Convection

(LES)

Two Stream Radiation3-D Radiation

Large Eddy Simulation

(Klemp, NCAR/MMM)
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WRF Projected TimelineWRF Projected Timeline
Development Task 2000 2001 2002 2003 2004 2005-08

Basic WRF model (limited 
physics, standard initialization)

Implementation and evaluation 
of alternative prototypes

Model physics
    Simple            Research suite             Advanced

Research quality NWP version 
of WRF

3D-Var assimilation system
Basic             Research        Advanced

4D-Var assimilation system, 
ensemble techniques

   Basic       Advanced

Testing for operational use at 
NCEP & AFWA

Diagnosis of operational 
performance, refinements

                     Release and support to community Operational deployment

(Klemp, NCAR/MMM)
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Link to Tephra ModelsLink to Tephra Models
Primarily Primarily -- Use of Model/Analysis WindsUse of Model/Analysis Winds
Better resolved smallBetter resolved small--scale circulationsscale circulations
Microphysics Microphysics -- condensation/precipitation condensation/precipitation 
processesprocesses
WRF-Chem Model – may be most useful 
for volcanic applications
· Forward trajectories with cascade interpolation 

back to grid
· Incorporates air-chemistry concentration/ 

dispersal
· High order compact differencing
· Terrain-following hybrid vertical coordinate 

(e.g. mass coordinate more realistic response 
to diabatic heating and cooling 
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Using Mesoscale ModelsUsing Mesoscale Models
Mesoscale detail is generally most reliably predicted when 
forced by topography or coastlines.

Is mesoscale model forecast on target? 
· compare model’s analysis, short-term forecast to obs
· review series of previous forecasts to determine how 

accurate model has been recently
· compare model to obs for synoptic features and trends 
· In some instances, model run that initialized with 

inaccurate boundary conditions may still prove useful  
Particularly true for predictions of topographically- or 
coastally-forced weather events
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